JOM 23580

Komplexkatalyse

XLIII *. 2D-¹³C/¹H-, ¹H/¹H- und hochauflösende ¹H-NMR-spektroskopische Charakterisierung des C_{12} -Allylnickel(II)-Kations [Ni($C_{12}H_{19}$)]⁺, ein Vergleich der Struktur in Lösung und im Festkörper und die Bedeutung für die Katalyse der 1,4-*cis*-Polymerisation des Butadiens

Steffen Wache und Rudolf Taube

Technische Hochschule Merseburg, Institut für Anorganische Chemie, O-4200 Merseburg (Deutschland) (Eingegangen den 15. Januar 1993)

Abstract

The C-signals for the C_{12} -chain in η^3 , η^2 , η^2 -dodeca-2(*E*), 6(E), 10(Z)-triene-1-yl-nickel(II) hexafluorophosphate, a catalyst for the 1,4-*cis*-polymerization of butadiene, could be assigned by use of $2D^{-13}C/{}^{1}H$ and ${}^{1}H/{}^{1}H$ NMR spectroscopy (HMQC and TOCSY). Furthermore, by use of high resolution ${}^{1}H$ NMR spectroscopy a large number of *vicinal* coupling constants ${}^{3}J$ of the $[Ni(C_{12}H_{19})]^+$ -cation could be determined in the C_{12} -allylnickel(II) complexes $[Ni(C_{12}H_{19})]X$ (X = PF₆, B(C₆H₃(CF₃)₂)₄, B(C₆F₅)₃F). They were correlated with the torsion angles in the C_{12} -chain by using the method of Karplus. The angles thus determined agreed well with those determined by X-ray structure analysis for the hexafluorophosphate. Thus the same conformation can be assumed for the $[Ni(C_{12}H_{19})]^+$ -cation in the solution and in the crystal lattice. The mechanistic consequences for the catalysis of 1,4-*cis*-polymerization of butadiene are also discussed.

Zusammenfassung

Durch 2D- ${}^{13}C/{}^{1}H$ - und ${}^{1}H/{}^{1}H$ -NMR-Spektroskopie (HMQC und TOCSY) gelang im $\eta^{3}, \eta^{2}, \eta^{2}$ -Dodeca-2(*E*),6(*E*),10(*Z*)-trien-1yl-nickel(II)-hexafluorophosphat [Ni(C₁₂H₁₉)]PF₆, einem Katalysator für die 1,4-*cis*-Polymerisation des Butadiens, die direkte Zuordnung der C-Signale für die C₁₂-Kette. Außerdem konnten mittels hochauflösender ¹H-NMR-Spektroskopie in den C₁₂-Allylnickel(II)-Komplexen [Ni(C₁₂H₁₉)]X (X = PF₆, B(C₆H₃(CF₃)₂)₄, B(C₆F₅)₃F) eine große Anzahl der *vicinalen* Kopplungskonstanten ³J des [Ni(C₁₂H₁₉)]⁺-Kations bestimmt und nach der Methode von Karplus mit den Torsionswinkeln in der C₁₂-Kette korreliert werden. Es ergibt sich eine praktisch vollständige Übereinstimmung mit den durch Röntgenkristallstrukturanalyse im Hexafluorophosphat ermittelten Winkeln. Danach kann die gleiche Konformation des [Ni(C₁₂H₁₉)]⁺-Kations in Lösung und im Kristallgitter angenommen werden. Die mechanistischen Konsequenzen für die Katalyse der 1,4-cis-Polymerisation des Butadiens werden diskutiert.

1. Einleitung

Mit der Darstellung und Charakterisierung der C_{12} -Allylnickel(II)-Komplexe [Ni($C_{12}H_{19}$)]X (X = PF₆,

Correspondence to: Prof. Dr. R. Taube.

 SbF_6 [1], BF_4 , $B(O_2C_6H_4)_2$, CF_3SO_3 , $AlBr_4$ [2], $B(C_6-H_3(CF_3)_2)_4$ [3] und $B(C_6F_5)_3F$ [4]) als neue neutralligandfreie Komplexkatalysatoren für die stereospezifische Butadienpolymerisation konnten wesentliche Erkenntnisse zum Mechanismus und zum Anionen-Einfluß in der allylnickelkomplexkatalysierten 1,4-Polymerisation des Butadiens gewonnen werden [5].

^{*} XLII. Mitteilung, siehe Lit. 7.

Durch Röntgenkristallstrukturanalyse der Komplexe $[Ni(C_8H_{13})PPh_3]BF_4$ [6] und $[Ni(C_{12}H_{19})]PF_6$ [7] wurde die mögliche π -Koordination von C-C-Doppelbindungen aus der wachsenden Kette am Nickel und deren Konformation sowie die mögliche Wechselwirkung des Anions mit dem Nickel im C₁₂-Allylnickel(II)-Kation $[Ni(C_{12}H_{19})]^+$ direkt nachgewiesen.

In der vorliegenden Arbeit wird zunächst über die exakte, voraussetzungslose Zuordnung der ¹³C-NMR-Signale im $[Ni(C_{12}H_{19})]^+$ -Kation durch 2D-¹³C/¹Hund ¹H/¹H-NMR-Spektroskopie berichtet. Außerdem werden die aus ¹H-NMR-Spektren für die C₁₂-Allylnickel(II)-Komplexe $[Ni(C_{12}H_{19})]X (X = PF_6, B(C_6 H_3(CF_3)_2)_4$, $B(C_6F_5)_3F$) ermittelten vicinalen Kopplungskonstanten ³J nach der Methode von Karplus [8,9] mit den Torsionswinkeln H-C-C-H in der C₁₂-Kette, die durch Röntgenkristallstrukturanalyse des Hexafluorophosphats erhalten wurden, korreliert. Aus der gefundenen strukturellen Übereinstimmung für die Lösung und den Festkörper kann auf eine entsprechende Stabilität der Anordnung der C12-Kette im $[Ni(C_{12}H_{19})]^+$ -Kation geschlossen werden, deren Konsequenzen für die Katalysatorkomplexbildung und den Mechanismus der 1,4-cis-Polymerisation des Butadiens diskutiert werden.

2. $2D^{-13}C/{}^{1}H^{-1}H^{$

Für die Durchführung der Messungen ergaben sich experimentelle Einschränkungen aus der thermischen Zersetzlichkeit des $[Ni(C_{12}H_{19})]PF_6$ in CD_2Cl_2 bei Raumtemperatur unter Abscheidung von feinverteiltem Nickel, der Verbreiterung der Protonensignale bei tieferen Temperaturen und dem prinzipiellen Ausschluß von Donorlösungsmitteln, wie z.B. THF- d_8 , die mit dem Komplex unter Verdrängung der Doppelbindungen vom Nickel reagieren [3].

Mit einer *ca.* 0,2 molaren Lösung des Komplexes in CD_2Cl_2 gelang es, in Meßzeiten von jeweils 60 min bei Raumtemperatur das HMQC (Heteronuclear Multiquantum Correlation)- und das TOCSY (Total Correlation Spectroscopy)-Spektrum [10] mit guter Auflösung und ausreichender Signalintensität aufzunehmen, vgl. Abbn. 3–5. Für die Zuordnung ist in Abb. 1 die Struktur des Kohlenstoffgerüstes im $[Ni(C_{12}H_{19})]^+$ -Kation mit der Numerierung der C-Atome formelmäßig angegeben, und Abb. 2 zeigt die entsprechende ORTEP-Darstellung aus der Röntgenkristallstrukturanalyse des $[Ni(C_{12}H_{19})]PF_6$ [7] mit der Numerierung der C- und der H-Atome.

Das in Abb. 3 angegebene HMQC-Spektrum zeigt die Korrelationspeaks zwischen dem ¹³C-NMR-

Abb. 1. Strukturformel des $[Ni(C_{12}H_{19})]^+$ -Kations und die Numerierung der C-Atome.

Spektrum mit den chemischen Verschiebungen für die C-Kerne auf der Ordinate und dem ¹H-NMR-Spektrum mit den chemischen Verschiebungen für die Protonen auf der Abzisse. Über die Korrelationspeaks ist die Zusammengehörigkeit der signalverursachenden Kohlenstoffatome (12 C-Signale) und der entsprechenden Wasserstoffatome (17 H-Signale) zum gleichen C-H-Fragment gegeben, die als Kriterium für die wechselseitige Signalzuordnung genutzt werden kann. So erlaubt der Korrelationspeak 1 für die drei äquivalenten Protonen mit der Signallage bei 1,71 ppm im ¹H-NMR-Spektrum sofort die Zuordnung des Signals bei 14,4 ppm zur endständigen Methylgruppe C12.

Abb. 2. ORTEP-Darstellung der Struktur des $[Ni(C_{12}H_{10})]^*$ -Kations mit der Numerierung für C- und H-Atome.

Abb. 3. HMQC-Spektrum des [Ni(C12H19)]PF6.

Die Korrelationspeaks 2/3, 4/5, 6/7 und 8/9 zeigen, daß an den 4 Kohlenstoffatomen, die zwischen 24 und 35 ppm in Resonanz treten, jeweils zwei nichtäquivalente Protonen gebunden sind. Daraus folgt die Zuordnung der C-Signale zu den vier Methylenkohlenstoffatomen C4, C5, C8 und C9, und zugleich die paarweise Zugehörigkeit der ¹H-Signale zur gleichen CH₂-Gruppe.

Für das C-Signal bei 77,1 ppm ergibt sich durch die Korrelationspeaks 10/11 ebenfalls ein Zusammenhang mit den Signalen zweier nichtäquivalenter Protonen bei 3,09 ppm und 4,93 ppm, woraus in Einklang mit der Lage im Allylbereich die Zuordnung zum Atom C1 zweifelsfrei getroffen werden kann.

Die restlichen sechs C-Signale zwischen 113 und 123 ppm korrelieren jeweils mit nur einem Protonensignal, vgl. Peak 12, 13, 14, 15, 16 und 17, so daß diese Signale den Methingruppen C2, C3, C6, C7, C10 und C11 zuzuordnen sind.

Damit steht die Signalzuordnung im ¹H- und im ¹³C-NMR-Spektrum für die beiden Endgruppen der C_{12} -Kette, die C1-Methylengruppe und die C12-Methylgruppe, eindeutig fest und kann als Ausgangspunkt für die weitere Zuordnung der Signale für die vier Methylen- und die sechs Methingruppen an Hand der beiden homokorrelierten ¹H-NMR-Spektren (TOCSY) in Abbn. 4 und 5 dienen.

Bei dieser Methode findet man außer den Diagonalpeaks nur dann Crosspeaks, wenn die beiden Protonen im gleichen Spinsystem skalar gekoppelt sind. Bei kurzen Mischzeiten wird die Kernspinpolarisation von

Abb. 4. TOCSY-Spektrum des $[Ni(C_{12}H_{19})]PF_6$ mit "kurzer" Mischzeit.

dem benachbarten Proton entsprechend der Größe von J auf benachbarte Protonen übertragen. Bei längeren Mischzeiten erfolgt durch die Vermittlung der dazwischenliegenden Protonen (Relaisfunktion) schrittweise eine Polarisationsübertragung auf entferntere Protonen, auch wenn die Kopplungskonstante zum Ausgangsproton gleich null ist.

Abb. 5. TOCSY-Spektrum des $[Ni(C_{12}H_{19})]PF_6$ mit "langer" Mischzeit.

Auf der Diagonalen der TOCSY-Spektren befinden sich die Protonenresonanzen 1–17, von denen die der Methylengruppen, entsprechend den Diagonalpeaks 2/3, 4/5, 6/7 und 8/9, paarweise zusammengefaßt werden können. Die Signale für die C1-Methylengruppe, d.h. für die Protonen H1a/b, vgl. Abb. 2, entsprechend den Diagonalpeaks 10 und 11, sowie das Signal für die C12-Methylgruppe, d.h. für H12, entsprechend dem Diagonalpeak 1, sind bereits eindeutig zugeordnet.

Die Methylprotonen, vgl. Diagonalpeak 1, koppeln im TOCSY-Spektrum bei kurzer Mischzeit, Abb. 4, mit 2 Protonen, und zwar stärker mit 13 (1;13) und schwächer mit 16 (1;16). Im Spektrum mit langer Mischzeit, Abb. 5, beobachtet man zusätzlich eine Polarisationsübertragung aus der CH₃-Gruppe auf die Protonen 4 und 5 (1;4 und 1;5) und 8 und 9 (1;8 und 1;9). Da mit zunehmender Entfernung der Protonen die Polarisationsübertragung immer schwächer wird, ergibt sich aus der abnehmenden Intensität der Crosspeaks die nachstehende Zuordnung:

Crosspeak	Diagonalpeak	Hi	$\delta_{ m H}$ (ppm)
1;13	13	H11	5,87
1;16	16	H10	5,40
1;4/1;5	4/5	H9a/b	2,33/2,44
1;8/1;9	8/9	H8a/b	2,69/3,25

Auf die gleiche Weise erfolgt die Zuordnung der Signale für die Allylprotonen, ausgehend vom anderen Kettenende. Im TOCSY-Spektrum mit kurzer Mischzeit, Abb. 4, wird die Kernspinpolarisation von den durch die Signale 10 und 11 gekennzeichneten C1-Methylenprotonen H1a/b auf 15 (10;15 und 11;15) und auch auf 12 (10;12 und 11;12) übertragen. Außerdem werden durch weitere Crosspeaks auch noch Kopplungen zwischen den C1-Methylenprotonen H1a,b selbst (10;11) und zwischen den Protonen der Peaks 12 und 15 (12:15) angezeigt. Bemerkenswert ist dabei die relativ große Intensität des Crosspeaks für die geminalen Protonen H1a,b (10;11), die möglicherweise auf eine effektivere Übertragung der Polarisation über das mittelständige H-Atom H2 zurückzuführen ist. Damit ergibt sich ausgehend von den Allylprotonen die folgende Zuordnung:

Crosspeak	Diagonalpeak	$\mathbf{H}i$	δ_{H} (ppm)
10;11	10/11	Hla/b	4,93/3,09
10;15/11;15/12;15	15	H2	6,24
10;12/11;12	12	H3	4,83

Im TOCSY-Spektrum mit längerer Mischzeit erscheinen Crosspeaks für die Kopplung der Allylprotonen 10/11, 15 und 12 mit den Protonen 2 (10;2/11;2/ 12;2/15;2) und 3 (10;3/11;3/12;3/15;3) sowie in deutlich schwächerer Form mit den Protonen 6 (10;6/ 11;6/12;6/15;6) und 7 (10;7/11;7/12;7/15;7). Daraus ergibt sich die Zuordnung der Diagonalpeaks 2/3 und 6/7 zu den der Allylgruppe am nächsten stehenden Methylenprotonen H4a/b und H5a/b an den C-Atomen 4 und 5.

Die Zuordnung der noch verbleibenden zwei Diagonalpeaks 14 und 17 kann dann über die Crosspeaks mit den Diagonalpeaks 8/9, d.h. über die Kopplung mit den Methylenprotonen H8a,b erfolgen, die für den Diagonalpeak 17 stärker ist, so daß damit dessen Zuordnung zum nächsten Methinproton H7 und die Zuordnung des Diagonalpeaks 14 zum entfernteren Methinproton H6 in der Doppelbindung C6-C7 festgelegt wird.

In Tabelle 1 ist die unter Einbeziehung der im folgenden Abschnitt beschriebenen Ergebnisse der hochauflösenden ¹H-NMR-Spektroskopie des [Ni(C_{12} - H_{19})] ¹-Kations in CD₃NO₂ erreichte Zuordnung der 17 Protonensignale und die damit über das HMQC-Spektrum, vgl. Abb. 3, verbundene eindeutige Zuordnung der 12 C-Signale zusammenfassend wiedergegeben.

3. Hochauflösende ¹H-NMR-spektroskopische Charakterisierung des $[Ni(C_{12}H_{19})]^+$ -Kations und die Konformation der C_{12} -Kette in Lösung und im Festkörper

Um die aus mechanistischer Sicht für den Ablauf der Katalyse der Butadienpolymerisation wichtige Frage zu klären, ob die durch Röntgenkristallstrukturanalyse des [Ni(C₁₂H₁₉)]PF₆ [7] ermittelte Konformation der C₁₂-Kette und Koordination des Anions am Nickel(II) auch in Lösung erhalten bleibt, wurden für drei C₁₂-Allylnickel(II)-Komplexe [Ni(C₁₂H₁₉)]X (X = PF₆, B(C₆H₃(CF₃)₂)₄, B(C₆F₅)₃)F) in CD₃NO₂ jeweils das ¹H-NMR-Spektrum bei Raumtemperatur mit hoher Auflösung aufgenommen. Außer den chemischen Verschiebungen $\delta_{\rm H}$ wurden auch eine große Anzahl vicinaler Kopplungskonstanten ³*J*(H*i*-H*j*), die von der Konformation der C₁₂-Kette abhängen, ermittelt, vgl. Tabelle 2.

Für die drei Komplexe stimmen sowohl die chemischen Verschiebungen, das gesamte Spektrenbild, als auch die Kopplungskonstanten im wesentlichen überein. Daraus kann in diesen Fällen auf das Vorliegen des $[Ni(C_{12}H_{19})]^+$ -Kations geschlossen werden, das in CD_3NO_2 mit keinem der unterschiedlich strukturierten Anionen in einer NMR-spektroskopisch nachweisbaren koordinativen Wechselwirkung steht. Gleiches gilt nach allem auch für die Lösung in CD_2Cl_2 , wie man der weitgehenden Übereinstimmung mit den Messungen für $[Ni(C_{12}H_{19})]PF_6$ in diesem Lösungsmittel entnehmen kann, vgl. Tabelle 1. Für die beiden anderen Komplexe ist der ionogene Aufbau außerdem

TABELLE 1. Zuordnung der 17 Protonen- und 12 ¹³C-Signale für das $[Ni(C_{12}H_{19})]^+$ -Kation durch 2D-¹³C/¹H- und ¹H/¹H-NMR-Spektroskopie in CD_2Cl_2 unter Einbeziehung der Ergebnisse der hochauflösenden ¹H-NMR-Spektroskopie in Tabelle 2. Die Numerierung der Diagonalpeaks bezieht sich auf die TOCSY-Spektren in Abbn. 4 und 5 und die Numerierung der Korrelationspeaks auf das HMQC-Spektrum in Abb. 3

Hi	δ _H (ppm)	Diagonal- peak Nr.	Ci	δ _C (ppm)	Korre- lations peak Nr.
H1a/b	4,93/3,09	11/10	C1	77,1	11/10
H2	6,24	15	C2	117,2	15
H3	4,83	12	C3	103,2	12
H4a/b	2,24/1,32	3/2	C4	23,6	3/2
H5a/b	2,81/2,40	7/6	C5	34,4	7/6
H6	6,17	14	C6	113,5	14
H7	5,44	17	C7	121,9	17
H8a/b	2,69/3,25	8/9	C8	33,5	8/9
H9a/b	2,23/2,44	4/5	C9	25,7	4/5
H10	5,40	16	C10	117,8	16
H11	5,87	13	C11	106,8	13
H12	1,71	1	C12	14,4	1

durch Leitfähigkeitsmessungen bzw. durch die eingehende NMR-spektroskopische Charakterisierung der freien Anionen zusätzlich gesichert [3,4,18].

Aus den vicinalen Kopplungskonstanten für die Allylprotonen H1a und H2, die 7,0 bzw. 7,3 Hz betragen, folgt deren cis-Stellung, und für die Protonen H1b und H2 sowie H2 und H3, die auf Grund des Aufspaltungsbildes, eines dublizierten Tripletts, gleiche Kopplungskonstanten von 13,6–14,6 Hz aufweisen, ergibt sich eine trans-Anordnung. Damit liegt die C3-substituierte Allylgruppe in der sogenannten syn-Konfiguration * vor.

In jedem der drei Protonenspektren zeigt sich das Signal H3 breit und unaufgelöst. Durch Abkühlung auf -70° C wird die Signalform nicht verändert. Das kann als ein Hinweis auf das Vorliegen eines dynamischen Gleichgewichts zwischen *anti*- und *syn*-Form der C3substituierten Allylgruppe in den C₁₂-Komplexen betrachtet werden und steht in Einklang mit der durch Trapping-Versuche bei der protolytischen Bildung des [Ni(C₁₂H₁₉)]⁺-Kation aus dem C₁₂-Diallylnickel(II) [Ni(C₁₂H₁₈)] in Diethylether bei -78° C nachgewiesenen sehr raschen *anti-syn*-Isomerisierung der am Nickel verbleibenden Allylgruppe [1].

Für die aliphatischen Protonen liegen die *vicinalen* Kopplungskonstanten ³J(H–H) im Erwartungsbereich und stimmen z.B. mit den für η^5 -Cyclopentadienyl- η^1, η^2 -4-pentenylnickel(II) publizierten Werten [12] im wesentlichen überein. Infolge auftretender Überlagerungen einzelner Signale sind jedoch nicht alle der aliphatischen Kopplungskonstanten bestimmbar.

Die Protonen der nächsten Doppelbindung H6 und H7 zeigen Kopplungskonstanten von 15,6–16,2 Hz und sind somit transständig angeordnet, während aus den Kopplungskonstanten für die Protonen der endständigen Doppelbindung H10 und H11 mit 9,3–9,7 Hz deren *cis*-Stellung folgt.

Für die Protonen der endständigen Methylgruppe H12 liegen die Kopplungskonstanten mit dem Proton H11 bei 5,9–6,5 Hz. Damit ergeben sich auch ¹H-NMR-spektroskopisch für die C₁₂-Kette in Lösung die gleichen Konfigurationen wie aus der Röntgenkristallstrukturanalyse, vgl. Abbn. 1 und 2.

Die *vicinalen* Kopplungskonstanten ermöglichen jedoch auch eine Aussage zur Konformation der C_{12} -Kette. Nach der von M. Karplus [8,9] abgeleiteten Gl. (1)

$${}^{3}J(\mathrm{H}i\mathrm{-H}j) = C\,\cos\,2\phi + B\,\cos\,\phi + A \tag{1}$$

besteht ein funktioneller Zusammenhang zwischen dem Torsionswinkel ϕ des Kettenfragments Hi-C-C-Hj in der Newman-Projektion entlang der C-C-Bindung und der vicinalen Kopplungskonstanten ${}^{3}J(Hi-Hj)$. A, B und C sind Konstanten, die von der Art des C-C-Fragments abhängen. In Abb. 6 ist für die vicinalen Kopplungskonstanten zwischen 0 und 16 Hz der experimentell gefundene Gültigkeitsbereich des nach Gl. (1) bestehenden Zusammenhangs mit dem Torsionswinkel ϕ angegeben (Karplus-Kurve) [13]. Vergleicht man nun die in Tabelle 3 angeführten vicinalen Kopplungskonstanten ${}^{3}J(Hi-Hj)$ der C₁₂-Kette im [Ni(C₁₂-H₁₉)]⁺-Kation und die durch Röntgenkristallstrukturanalyse des [Ni(C12H19)]PF6 ermittelten zugehörigen Torsionswinkel ϕ , und trägt die nach Tabelle 3 numerierten Korrelationspunkte 1-11 in das Diagramm in Abb. 6 ein, dann liegen diese alle im Gültigkeitsbereich der Karplus-Beziehung (1), d.h. man kann davon ausgehen, daß auch die Konformation der C₁₂-Kette im [Ni(C₁₂H₁₉)]⁺-Kation im Festkörper und in der Lösung weitgehend übereinstimmt.

4. Schlußfolgerungen und Diskussion

Mit der 2D-¹³C-¹H-NMR-spektroskopischen Analyse des [Ni($C_{12}H_{19}$)]PF₆ und der ¹H-NMR-spektroskopischen Charakterisierung der C_{12} -Allylnickel(II)-Komplexe [Ni($C_{12}H_{19}$)]X (X = PF₆, B($C_{6}H_{3}(CF_{3})_{2}$)₄, B($C_{6}F_{5}$)₃F) wurde die Zuordnung des ¹³C-NMR-Spektrums für die C_{12} -Kette und die Existenz des [Ni($C_{12}H_{19}$)]⁺-Kations endgültig gesichert. Die ursprüngliche nur auf Analogieschlüssen beruhende Zuordnung des ¹³C-NMR-Spektrums der C_{12} -Allylkomp-

^{*} Üblicherweise erfolgt die Konfigurationsbezeichnung in der Allylgruppe unter Bezug auf das mittelständige H-Atom H2 [11].

Ηi	[Ni(C ₁₂ H ₁₉)]	PF ₆ /CD ₃ NO		[Ni(C ₁₂ H ₁₉)]]	B(C ₆ H ₃ (CF ₃)) ₂) ₄ /CD ₃ NO ₂	[Ni(C ₁₂ H ₁₉)]	$FB(C_6F_5)_3/C$	'D ₃ NO ₂	1
	δ _H [ppm]	M	$^{3}J(Hi-Hj)$ [Hz]	δ _H [ppm]	W	$^{3}J(Hi-Hj)[Hz]$	õ _H [ppm]	Σ	J(Hi-Hj)[Hz]	
Hla	5,04	(p)	$^{3}J(H1a-H2) = 7,3$	5,03	(p)	$^{3}J(H1a-H2) = 7,0$	5.03	(P)	$^{3}/(\text{H1a-H2}) = 7.0$	1
HIb	3,07	(p)	3 <i>J</i> (H1b-H2) = 14,6	3,06	(P)	${}^{3}J(H1b-H2) = 14.5$	3,06	(P)	3 (H1b-H2) = 14.2	
H2	6.38	(IP)	3 /(H2-H1a) = 7,3	6,37	(1p)	3 <i>J</i> (H2–H1a) = 7,5	6.37	(dt)	3 <i>J</i> (H2–H1a) = 7.3	
			³ <i>J</i> (H2–H3)			³ J(H2-H3)			³ /(H2-113)	
			$={}^{3}J(H2-H1b) = 13,6$			$=^{3}J(H2-H1b) = 13.5$			$=^{3}/(H2-H1b) = 137$	
H3	4,75	(m)		4,75	(B)		4,74	(m)		
H4a/b	2,26/1,34	(m/m)		2,27/1.32	(m/m)		2.27/1.34	(m/m)		
H5a∕b	2,86/2,32	(p/m)	$^{3}J(H5b-H4b) = 16,6$	2,84/2.35	(p/m)	$^{3}J(H5b-H4b) = 16,0$	2,86/2,33	(p/m)	$^{3}/(H5b-H4b) = 16.1$	
H6	6,19	(ppp)	$^{3}J(H6-H7) = 15,6$	6,20	(ppp)	$^{3}J(H6-H7) = 16.1$	6.20	(dm)	3 I(H6-H7) = 159	
			$^3J(\text{H6-H5b}) \approx 2-3$			$^{3}J(H6-H5b) \approx 2-3$				
			$^3J(H6-H5a) \approx 2$			3 <i>J</i> (H6-H5a) ≈ 2				
H7	5,63	(ppp)	$^{3}J(H7-H6) = 15,6$	5,63	(ppp)	$^{3}J(H7-H6) = 16,1$	5.62	(ddd)	$^{3}/(H7-H6) = 16.2$	
			$^{3}J(H7-H8a) = 5,0$			$^{3}J(H7-H8a) = 5.0$			$^{3}/(\text{H7}-\text{H8a}) = 4.5$	
			$^{3}J(H7-H8b) = 1$			J = (141 - 148) = 1				
H8a∕b	2,74/3,17	(m/b)	3 <i>J</i> (H8a-H9a) = 15,1	2,70/3.15	(m∕p)	$^{3}J(H8a-H9a) = 14.5$	2,74/3,16	(m/b)	$^{3}J(H8a-H9a) = 15.1$	
119a/b	2,28/2,37	(m/m)		2.27//2.40	(m/m)		2,27/2.37	(m/m)		
1110	5,37	(ddt)	$(11H-01H)/_{g}$	5.36	(ddt)	³ /(H10)-H11)	5,35	(ddt)	(IIIH-01H)/ ₂	
			$= {}^{3}I(H10-H9a) = 9.7$			$=^{3}J(H10-H9a) = 9.7$			$={}^{3}/(H10-H9_{a}) = 9.5$	
			3 <i>J</i> (H10-H9b) = 5.4			3 <i>J</i> (H10-H9b) = 5,9			$^{3}/(\text{H1}(0-\text{H9b}) = 5.4$	
						${}^{3}J(H10-H8a) = 1,1$				
HII	6.02	(dd)	$\sqrt{3}$ /(H11-H10) = 9,3	6,02	(dd)	3/(H11-H10) = 9,7	6,01	(dq)	J(H11-H10) = 9,3	
			$^{1}J(H11-H12) = 6,3$			$^{3}J(H11-H12) = 6.5$			3 J(H11-H12) = 6.3	
H12	1,75	(P)	$^{3}J(H12-H11) = 5,9$	1.75	(p)	$^{3}J(H12-H11) = 6.5$	1,74	(P)	$^{3}J(H12-H11) = 6,3$	
the second se	The second	The second	2. The second mean of a difference of the second state of the second state of the second s Second second s Second second se	the second se	And the second se					

TABELLE 2. Chemische Verschiebungen δ_{11} in ppm und *vieinale* Kopplungskonstanten ³*I*(H*i*-H*j*) in Hz für die H-Atome der C₁₂-Allylnicke(II).Komplexe Ni(C₁₂H₁₀)X (X = PF₆, B(C₆H₃(CF₃)₂), B(C₆F₅)₃F) aus den in CD₃NO₂ bei Zimmertemperatur gemessen ¹H-NMR-Spektren. Zur Bezeichnung der H-Atome vgl. Abb. 2. M bedeutet die Signalmultiplizität

Abb. 6. Bereich der *vicinalen* Kopplungskonstanten in Abhängigkeit vom Torsionswinkel mit den Wertepaaren $({}^{3}J(Hi-H_{j}); \phi)$ für $[Ni(C_{12}H_{19})]PF_{6}$ entsprechend der Numerierung in Tabelle 3.

lexe [1,2] muß entsprechend korrigiert werden, ohne daß sich dadurch die zur Konstitution der Komplexe getroffenen Schlußfolgerungen ändern.

In Tabelle 4 sind für die bis jetzt von uns dargestellten C₁₂-Allylnickel(II)-Komplexe die ¹³C-NMR-Signale in der korrigierten Zuordnung zusammenfassend angeführt. Während in den Komplexen [Ni(C₁₂H₁₉)]X mit den Anionen X⁻ = B(C₆H₃(CF₃)₂)₄⁻, B(C₆F₅)₃F⁻, PF₆⁻ und SbF₆⁻ NMR-spektroskopisch eine Wechselwirkung des Anions mit dem [Ni(C₁₂H₁₉)]⁺-Kation nicht nachweisbar ist, die Spektren dieser Komplexe sind praktisch identisch, deutet sich beim Tetrafluoroborat in der Hochfeldverschiebung des Signals für das C-Atom 3 und der Signale für die olefinischen C-Atome eine geringere Akzeptorwirkung des Zentralatoms an, die durch eine koordinative BF₄ \rightarrow Ni-Wechselwirkung über die z-Position, analog zu der im

TABELLE 3. Vicinale Kopplungskonstanten ${}^{3}J(\text{H}i-\text{H}j)$ für die C₁₂-Kette im [Ni(C₁₂H₁₉)]⁺-Kation und die entsprechenden Torsionswinkel ϕ aus der Röntgenkristallstrukturanalyse des [Ni(C₁₂H₁₉)]PF₆ [7]

Nr.	$^{3}J(\text{H}i-\text{H}j)$ (Hz)	φ Hi-Hj (°)
1	$^{3}J(H1a-H2) = 7,3$	ϕ H1a-H2 = -12
2	$^{3}J(H1b-H2) = 14,6$	ϕ H1b-H2 = -167
3	$^{3}J(H2-H3) = 13,7$	ϕ H2-H3 = 168
4	$^{3}J(\text{H5b}-\text{H4b}) = 16,6$	ϕ H5b-H4b = -163
5	$^{3}J(H6-H7) = 15,6$	ϕ H6-H7 = 164
6	$^{3}J(H6-H5b) \approx 2-3$	$\phi \text{ H6-H5b} = 49$
7	$^{3}J(H7-H8a) = 5,0$	ϕ H7–H8a = 38
8	$^{3}J(H8a-H9a) = 15,1$	ϕ H8a-H9a = -172
9	$^{3}J(H10-H11) = 9,7$	ϕ H10-H11 = -8
10	$^{3}J(H10-H9a) = 9,7$	ϕ H10–H9a = 175
11	$^{3}J(H10-H9b) = 5,4$	ϕ H10–H9b = 56

festen Zustand durch Röntgenkristallstrukturanalyse im [Ni($C_{12}H_{19}$)]PF₆ festgestellten Koordination des PF₆⁻-Anions [7], bedingt sein könnte. Die im Vergleich zum PF₆⁻ stärkere Koordinationstendenz des BF₄⁻ ist auch in anderen Fällen nachgewiesen [14,15].

Eine deutliche Hochfeldverschiebung der genannten C-Signale, insbesondere für das Atom C3, ist beim Übergang zu den sauerstoffhaltigen Anionen $B(O_2C_6-H_4)_2^-$ und $CF_3SO_3^-$ festzustellen und zeigt eine stärkere koordinative Wechselwirkung dieser Anionen mit dem $[Ni(C_{12}H_{19})]^+$ -Kation an, die sich auch folgerichtig in den katalytischen Eigenschaften der Komplexe widerspiegelt [2].

Im AlBr₄⁻⁻Komplex schließlich, folgt aus der starken Hochfeldverschiebung der Allyl-C-Signale und der Tieffeldverschiebung für die olefinischen C-Atome die Verdrängung der Doppelbindungen vom Nickel(II), die vermutlich aus einer zweizähligen Koordination des AlBr₄⁻⁻Anions resultiert.

Der am $[Ni(C_{12}H_{19})]PF_6$ nachgewiesene Erhalt der Konfiguration und Konformation der C_{12} -Kette beim Übergang vom kristallinen in den gelösten Zustand

TABELLE 4. Korrigierte Zuordnung der chemischen Verschiebungen δ_C in ppm für die C-Atome Ci (i = 1-12) in den bis jetzt dargestellten η^3, η^2, η^2 -Dodeca-2(*E*),6(*E*),10(*Z*)-trien-1-yl-nickel(11)-Komplexen [Ni(C₁₂H₁₉)]X (X = PF₆, SbF₆ [1], BF₄, B(O₂C₆H₄)₂, CF₃SO₃, AlBr₄ [2], B(C₆H₃(CF₃)₂)₄ [3] und B(C₆F₅)₃F [4])

Anion X	LM	<i>T</i> (°C)	CI	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
$\overline{B(C_6H_3(CF_3)_2)_4}$	CD ₃ NO ₂	25	77,3	118,2	103,8	24,7	35,6	113,8	123,2	34,5	26,2	118,5	108,5	14,2
$B(C_6F_5)_3F$	CD_3NO_2	25	77,7	118,4	104,1	24,8	35,2	114,0	123,4	34,7	26,4	118,9	108,5	14,4
PF ₆	CD_2Cl_2	25	77,1	117,2	103,2	23,6	34,4	113,5	121,9	33,5	25,7	117,8	106,8	14,4
SbF ₆	CD_2Cl_2	25	77,8	116,9	102,6	23,0	34,3	112,7	120,9	33,3	25,4	118,0	106,1	14,1
BF ₄	CD_2Cl_2	0	78,2	117,0	100,7	23,0	33,1	110,1	118,5	32,7	24,7	115,8	104,5	13,8
$B(O_2C_6H_4)_2$	CD_2Cl_2	-45	79,5	117,5	98,5	23,5	32,6	105,5	115,5	31,6	23,5	113,5	103,5	13,9
CF ₃ SO ₃	CD_2Cl_2	20	79,2	119,7	94,6	24,1	33,4	105,4	113,4	31,0	25,3	111,7	104,8	13,9
AlBr ₄	CD_2Cl_2	20	51,1	105,7	70,8	27,3	33,0	130,9	130,3	32,8	31,7	129,3	124,2	13,0
Fragment:			CH ₂ =	CH C	H–	-CH ₂ -	-CH ₂ -	-CH=0	CH-	-CH	2-CH2-	-CH=	-CH-	-CH ₃

Abb. 7. Katalytischer Zyklus für die 1,4-cis-Polymerisation des Butadiens mit dem anti- η^3 -Polybutadienyl- η^4 -cis-Butadien-Nickel(II)-Komplex [RC₃H₄Ni(C₄H₆)]X als Katalysator.

spricht für eine entsprechende Stabilität der quasi planaren η^3, η^2, η^2 -Koordination mit der C3-substituierten Allylgruppe in der syn-Konfiguration, der nächsten Doppelbindung in der trans- und der endständigen Doppelbindung in der cis-Konfiguration. Zur Katalyse der Butadienpolymerisation ist eine π -Komplexbildung mit dem Butadien unter Verdrängung der Doppelbindungen vom Nickel erforderlich, die in nennenswertem Ausmaß vermutlich nur durch die relativ stabile η^4 -single-cis-Koordination des Butadiens erreicht werden kann. Außerdem muß man gemäß der sogenannten anti-cis- und svn-trans-Korrelation [16] davon ausgehen, daß für die cis-Polymerisation, die durch das [Ni(C₁₂H₁₉)]⁺-Kation mit einer Selektivität von über 90% katalysiert wird [17], der katalytisch aktive Butadien-Komplex $[RC_3H_4Ni(C_4H_6)]^+$ in der gleichgewichtsmäßig stets vorhandenen thermodynamisch weniger stabilen anti-Form wesentlich reaktiver als der entsprechende syn-Komplex ist. Außerdem liegt die nächste Doppelbindung, deren koordinative Mitwirkung bei der Einschubreaktion im Übergangszustand aus energetischen Gründen angenommen werden muß [7,17], in der cis-Konfiguration vor, so daß sich der in Abb. 7 formelmäßig wiedergegebene Reaktionsablauf für die *cis*-Polymerisation ergibt. Die energetisch notwendige koordinative Mitwirkung der nächsten Doppelbindung im Übergangszustand der Einschubreaktion könnte aus der anti-Konfiguration der Allylgruppe leichter erfolgen und die für die cis-Selektivität erforderliche höhere Reaktivität des anti-Polybutadienylkomplexes im Vergleich zum syn-Komplex erklären. Außerdem wird verständlich, daß die maximal mögliche katalytische Aktivität durch die notwendige η^4 -cis-Koordination des Butadiens am Nickel unter Verdrängung der Doppelbindungen vom Nickel thermodynamisch begrenzt wird und die Ausbildung des in Abb. 7 formulierten katalytischen Zyklus für die cis-Polymerisation in Abhängigkeit von der Struktur des Startkomplexes für die Katalyse eine Initiierungsphase zur Folge haben kann, die sich unter Umständen auch auf die erreichbare Aktivität und Selektivität auswirkt [18].

5. Experimentelles

Die 2D-NMR-Experimente wurden an einem 600-MHz Bruker Spektrometer durchgeführt. Aquisitionsparameter:

7	OCSY (total	correlations spectroscopy	1)
-	~~~ ~ `			- 1

Z)

Datenpunkte in F2:	2048 Datenpunkte in F1: 256
Scans:	16 Dummy scans: 2
Spektrale Breite in F2:	6,89 ppm (4132 Hz)
Spektrale Breite in F1:	150 ppm (22637 Hz)
Transmitterfrequenz:	600, 1395 MHz
Entkopplungs-	
frequenz (¹³ C-Kanal):	150, 916 MHz
Meßzeit:	1 h

Für die Messung der ¹H-NMR-Spektren standen ein JEOL JNM-GX-270 (270,2 MHz) und ein Bruker AC-P 200 (200,13 MHz) zur Verfügung. Als Lösungsmittel dienten CD_2Cl_2 bzw. CD_3NO_2 , sämtliche Spektren wurden bei RT aufgenommen. Die Herstellung der Lösungen erfolgte unter strengem Sauerstoff- und Feuchtigkeitsausschluß, wobei 50–90 mg Substanz in 1 ml Lösungsmittel gelöst und die Lösung über eine G4-Fritte direkt in ein 5 mm NMR-Rohr filtriert wurde.

Dank

Wir danken Herrn M. Eberstadt aus dem Arbeitskreis von Prof. Dr. Kessler im Organisch-Chemischen Institut der TU München für die Aufnahme der 2D-NMR-Spektren. Der Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie e.V. danken wir für die Gewährung eines Stipendiums mit dem ein Forschungsaufenthalt von S. Wache bei Prof. Dr. W.A. Herrmann am Anorganisch-Chemischen Institut der TU München ermöglicht wurde. Herrn Prof. Dr. R. Radeglia von der Bundesanstalt für Materialforschung und -prüfung in Berlin-Adlershof sind wir für die Durchsicht des Manuskriptes zu Dank verpflichtet.

Literatur

- I. R. Taube, P. Böhme und J.-P. Gehrke, J. Organomet. Chem., 399 (1990) 327.
- 2 R. Taube, J.-P. Gehrke, P. Böhme und K. Scherzer, J. Organomet. Chem., 410 (1991) 403.
- 3 R. Taube und S. Wache, J. Organomet. Chem., 428 (1992) 431.

- 4 R. Taube und S. Wache, J. Organomet. Chem., im Druck.
- 5 R. Taube, U. Schmidt, J.-P. Gehrke, P. Böhme, J. Langlotz und S. Wache, *Makromol. Chem. Chem. Macromol. Symp.*, 66 (1993) 245.
- 6 R. Kempe, J. Sieler, S. Wache und R. Taube, J. Organomet. Chem., 455 (1993) 241.
- 7 R. Taube, S. Wache, J. Sieler und R. Kempe, J. Organomet. Chem., 456 (1993) 131.
- 8 M. Karplus, J. Chem. Phys., 30 (1959) 11.
- 9 M. Karplus, J. Am. Chem. Soc., 85 (1963) 2870.
- 10 H. Kessler, M. Gehrke und C. Griesinger, Angew. Chem., 100 (1988) 507; R.R. Ernst, Angew. Chem., 104 (1992) 817.
- 11 B. Bogdanovic, P. Heimbach, M. Kröner und G. Wilke, Liebigs Ann. Chem., 727 (1969) 143.

- 12 H. Lehmkuhl, A. Rufinska, R. Benn, G. Schroth, R. Mynott, Liebigs Ann. Chem., (1981) 317.
- 13 H. Friebolin, Ein- und zweidimensionale NMR-Spektroskopie, VCH Verlagsgesellschaft mbH, Weinheim (Deutschland), 1988, S. 74.
- 14 W. Beck und K.-H. Sünkel, Chem. Rev., 88 (1988) 1405.
- 15 R.V. Honeychuk und W.H. Hersh, Inorg. Chem., 28 (1989) 2869.
- 16 R. Taube, J.-P. Gehrke und P. Böhme, Wiss. Zeitschr. THLM, 29 (1987) 310.
- 17 R. Taube, in H. Werner, A.G. Griesbeck, W. Adam, G. Bringmann und W. Kiefer (eds.), *Selective Reactions of Metal-Activated Molecules*, Vieweg, Braunschweig, 1992, S. 19.
- 18 S. Wache, *Dissertation*, Martin-Luther-Universität Halle-Wittenberg, 1993.